
Chapter 2

Fuzzy Logic

The chapter gives first a short description of classical and many-valued
logics. Classical (two-valued) logic deals with propositions that are ei-
ther true or false. In many-valued logic, a generalization of the classical
logic, the propositions have more than two truth values. Fuzzy logic is
an extension of the many-valued logic in the sense of incorporating fuzzy
sets and fuzzy relations as tools into the system of many-valued logic.
Fuzzy logic provides a methodology for dealing with linguistic variables
and describing modifiers like very, fairly, not, etc. Fuzzy logic facilitates
common sense reasoning with imprecise and vague propositions dealing
with natural language and serves as a basis for decision analysis and
control actions.

2.1 Basic Concepts of Classical Logic

Here, some basic concepts of the classical1 (mathematical) or two-valued
logic are briefly reviewed.

Propositions

A proposition, also called statement, is a declarative sentence that is
logically either true (T) denoted by 1 or false (F) denoted by 0. The set
T2 = {0, 1} is called truth value set for the proposition. In other words
a proposition may be considered as a quantity which can assume one of
two values: truth or falsity.
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Example 2.1

Consider the sentences:

(a) The stock market is independent of inflation rates (false proposi-
tion);

(b) Money supply is an economic indicator (true proposition);

(c) The price of a product is x dollars where x > 100 (contains a
variable; neither true nor false, it is not a proposition);

(d) Is the stock market going up? (it is not a proposition).
2

We use letters, p, q, r, . . ., to represent propositions.
The propositions (a) and (b) in Example 2.1 are simple.
Compound propositions consist of two or more simple propositions

joined by one or more logical connectives.
Consider the propositions p and q whose truth values belong to the

truth value set {0, 1}. The meaning of the logical connectives is given
by definitions and expressed by equations in which p and q stand for
the truth values of the propositions p and q.2

Negation

Negation or denial of p, denoted p (read not p) is true when p is false
and vice versa, hence

p = 1 − p. (2.1)

Conjunction

Conjunction of p and q, denoted p∧ q (read p and q) is true when p and
q are both true (and is the common and in English);

p ∧ q = min(p, q). (2.2)

Disjunction

Disjunction of p and q, denoted p ∨ q (read p or q) is true when p or q
is true or both p and q are true;

p ∨ q = max(p, q). (2.3)
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Implication (Conditional proposition)

The proposition p implies q, denoted p → q (also read if p then q) is
true except when p is true and q is false; p and q are called premise
(antecedent) and conclusion (consequent) , correspondingly;

p → q = min(1, 1 + q − p). (2.4)

It should be emphasized that the truth or falsity of a compound
proposition (formulas (2.1)–(2.4)) is determined only by the truth values
of its simpler propositions p and q.

Truth tables

A very useful device to deal with the truth values of compound propo-
sitions is the truth table.3

The truth values of the operations (2.1)–(2.4) under all possible
truth value for p and q are presented in Table 2.1 (1 stands for truth(T)
and 0 for false(F)). The right hand sides of (2.1)–(2.4) can be used to
calculate the truth values in a straightforward manner.

Table 2.1. Truth values in the set T2 = {0, 1} of negation, conjunction,
disjunction, and implication.

p q p p ∧ q p ∨ q p → q
1 − p min(p, q) max(p, q) min(1, 1 + q − p)

1 1 0 1 1 1
1 0 0 0 1 0
0 1 1 0 1 1
0 0 1 0 0 1

Tautology

Tautology is a compound proposition form that is true under all possible
truth values for its simple propositions.

Contradiction

Contradiction or fallacy is a compound proposition form that is false
under all possible truth values for its simple propositions.
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Example 2.2

The truth values for the proposition forms p ∧ p and p ∨ p are pre-
sented on Table 2.2.

Table 2.2. Truth values for p ∧ p and p ∨ p.

p p p ∧ p p ∨ p

1 0 0 1
0 1 0 1

Hence p ∧ p with truth value 0 is a contradiction (it is called law of
contradiction), while p ∨ p with truth value 1 is a tautology (it is called
the law of excluded middle: every proposition is either true or false).

2

The branch of classical logic dealing with compound propositions is
known as propositional calculus. Its extension is the predicate calculus.

Predicate

Predicate is a declarative sentence containing one or more variables or
unknowns. A predicate is neither true nor false, hence it is not a propo-
sition. Predicates are denoted by p(x), q(x, y), · · ·, where x, y, · · · are
unknowns; they are called also logical functions. If in a predicate num-
bers are substituted for variables, the predicate becomes a proposition.
For instance sentence (c) in Example 2.1 is a predicate. If x is substi-
tuted by a number, say 150, then (c) reduces to a proposition. Hence
predicates are closely related to propositions; they can be considered as
generalized propositions or indefinite propositions.

Correspondence between the classical logic and set theory

There is a correspondence between the logical connectives and, or, not,
implication and the set operations intersection, union, complement, in-
clusion (subset), correspondingly, expressed in Table 2.3

It is established that this correspondence (called isomorphism) guar-
antees that every theorem or result in set theory has a counterpart in
two-valued logic and vice versa. They can be obtained from one another
by exchanging the corresponding symbols given in Table 2.3.
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Table 2.3. Correspondence between logical connectives and set opera-
tions.

Logic Set theory

∨ ∪
∧ ∩
− −

→ ⊆

2.2 Many-Valued Logic

Since the time when in logic the principle every proposition is either
true or false has been declared, there have always been some doubts
about it. One reason for questioning the above principle is the difficulty
arising with estimating truth values of propositions expressing future
events, for instance tomorrow will rain.4 Future events are not yet true
or false. Their truth value is unknown; it will be determined when
the events happen. The classical (two-valued) logic is not sufficient to
describe the truth value of these type of events. Hence it looks natural
to allow a third truth value other than pure truth or falsity which leads
to a three-valued logic. Depending on how the third value is defined,
several three-valued logics were introduced.

Here we discuss the three-valued logic5 proposed by  Lukasiewicz
(1920).

Suppose that a proposition has three truth values: true denoted by
1, false denoted by 0, and neutral or indeterminate denoted by 1

2 . They
form the truth value set

T3 = {0,
1

2
, 1}.

If p and q are propositions, the logical connectives negation (−),
conjunction (∧), disjunction (∨), and implication (→) are defined as in
classical logic by (2.1)–(2.4) with the difference that the truth values of
p and q belong to T3.

The truth values of (2.1)–(2.4) with T3 are given in Table 2.4.
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Table 2.4. Truth values in T3 for negation, conjunction, disjunction,
implication.

p q p q p ∧ q p ∨ q p → q

1 1 0 0 1 1 1
1 1

2 0 1
2

1
2 1 1

2
1 0 0 1 0 1 0
1
2 1 1

2 0 1
2 1 1

1
2

1
2

1
2

1
2

1
2

1
2 1

1
2 0 1

2 1 0 1
2

1
2

0 1 1 0 0 1 1
0 1

2 1 1
2 0 1

2 1
0 0 1 1 0 0 1

Example 2.3

Let us construct the truth table for the compound propositions p∧p
and p ∨ p. The result is presented on Table 2.5.

Table 2.5. Truth values in T3 for p ∧ p and p ∨ p.

p p p ∧ p p ∨ p

1 0 0 1
1
2

1
2

1
2

1
2

0 1 0 1

Since the value 1
2 appears in the third and forth columns in Table 2.5,

unlike the two-valued logic (see Table 2.3), p∧ p and p∨ p, respectively,
do not satisfy the law of contradiction and the law of excluded middle.

2

On the basis of Example 2.3 we may say that p∧ p expresses a more
general law of quasi-contradiction; p ∨ p is a quasi-tautology.

The three-valued logic is a generalization of the two-valued logic. If
the rows in which the truth value 1

2 appears are removed from Table 2.4,
then the result will be Table 2.1.

A further generalization allows a proposition to have more than three
truth values. If for any given natural number n ≥ 3, the truth values
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are represented by rational numbers in the interval [0, 1] that subdivide
[0, 1] into equal parts, then they form the truth set Tn,

Tn = {0,
1

n − 1
,

2

n − 1
, . . . ,

n − 2

n − 1
,
n − 1

n − 1
= 1}.

In the  Lukasiewicz n-valued logic the formulas (2.1)–(2.4) for logical
connectives remain valid provided that p and q are substituted by their
truth values in Tn.

If the truth values are represented by all real numbers in [0, 1], i.e.
the truth set is T∞ = [0, 1], the many-valued logic6 is called infinite-
valued logic; it is referred as the standard  Lukasiewicz logic. There is
a correspondence (isomorphism) between the fuzzy set theory and the
infinite-valued logic. Complementation (1.14), intersection (1.15), and
union (1.16) in fuzzy sets correspond respectively to negation (2.1), con-
junction (2.2), and disjunction (2.2) in the infinite-valued logic provided
that p and q are substituted by their truth values from T∞.

2.3 What is Fuzzy Logic?

The founder of fuzzy logic is Lotfi Zadeh (1973, 1975, 1976, 1978, 1983).
He made significant advancement in the establishment of fuzzy logic as
a scientific discipline.

There is not a unique system of knowledge called fuzzy logic but
a variety of methodologies proposing logical consideration of imperfect
and vague knowledge. It is an active area of research with some topics
still under discussion and debate.

We have seen that there is a correspondence (isomorphism) between
classical sets and classical logic (Table 2.4).

Fuzzy sets are a generalization of classical sets and infinite-valued
logic is a generalization of classical logic. There is also a correspondence
(isomorphism) between these two areas (Section 2.2).

Fuzzy logic uses as a major tool—fuzzy set theory. Basic mathe-
matical ideas for fuzzy logic evolve from the infinite-valued logic, thus
there is a link between both logics. Fuzzy logic can be considered as an
extension of infinite-valued logic in the sense of incorporating fuzzy sets
and fuzzy relations into the system of infinite-valued logic.7
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Fuzzy logic focuses on linguistic variables in natural language and
aims to provide foundations for approximate reasoning with imprecise
propositions. It reflects both the rightness and vagueness of natural
language in common-sense reasoning.

The relations between classical sets, classical logic, fuzzy sets (in
particular fuzzy numbers), infinite-valued logic, and fuzzy logic are
schematically shown on Fig. 2.1.

Major parts of fuzzy logic deal with linguistic variables and linguistic
modifiers, propositional fuzzy logic, inferential rules, and approximate
reasoning.

Fuzzy Numbers

Classical
Logic

Classical

Sets

Infinite-
valued 
Logic

Fuzzy

Logic

Fuzzy Sets

Correspondence Correspondence

Fig. 2.1. Evolvement of Fuzzy Logic.

2.4 Linguistic Variables

Variables whose values are words or sentences in natural or artificial
languages are called linguistic variables.

To illustrate the concept of linguistic variable consider the word age
in a natural language; it is a summary of the experience of enormously
large number of individuals; it cannot be characterized precisely. Em-
ploying fuzzy sets (usually fuzzy numbers), we can describe age approx-
imately. Age is a linguistic variable whose values are words like very
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young, young, middle age, old, very old. They are called terms or labels
of the linguistic variable age and are expressed by fuzzy sets on a uni-
versal set U ⊂ R+ called also operating domain measured in years. It
represents the base variable age. Each term is defined by an appropriate
membership function. Good candidates for membership functions are
triangular, trapezoidal, or bell-type shapes, without or with a flat, or
parts of these (Chapter 1, Sections 1.4–1.6).

Example 2.4

Let us describe the linguistic variable age on the universal set U =
[0, 100] or operating domain of x (base variable) representing age in
years (see Fig. 2.2) by triangular and part of trapezoidal numbers which
specify the terms very young, young, middle age, old, and very old.

0 5

x

very young                 young                 middle age          old                           very old

AGE
µ

30 70 95 10050 45

.75

.25
base variable age

Linguistic Variable

Fig. 2.2. Terms of the linguistic variable age.

The membership functions of the terms are:

µvery young(x) =

{

1 for 0 ≤ x ≤ 5,
30−x
25 for 5 ≤ x ≤ 30,

µyoung(x) =

{

x−5
25 for 5 ≤ x ≤ 30,

50−x
20 for 30 ≤ x ≤ 50,
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µmiddle age(x) =

{

x−30
20 for 30 ≤ x ≤ 50,

70−x
20 for 50 ≤ x ≤ 70,

µold(x) =

{

x−50
20 for 50 ≤ x ≤ 70,

95−x
25 for 70 ≤ x ≤ 95,

µvery old(x) =

{

x−70
25 for 70 ≤ x ≤ 95,

1 for 95 ≤ x ≤ 100.

For instance, a person whose age is 45 is young to degree 0.25 and
middle age to degree 0.75. The degrees are found by substituting 45 for
x into the second equation of the term µyoung(x) and first equation of
the term µmiddleage(x), correspondingly. Hence a person whose age is
45 is less young (degree 0.25) and more middle age (degree 0.75).

2

Linguistic variables play an important role in applications and in
particular in financial and management systems. For example, truth,8

confidence, stress, income, profit, inflation, risk, investment, etc. can be
understood to be linguistic variables.

2.5 Linguistic Modifiers

Let x ∈ U and A is a fuzzy set with membership function µA(x). We
denote by m a linguistic modifier, for instance very, not, fairly (more
or less), etc. Then by mA we mean a modified fuzzy set by m with
membership function µmA(x).

The following selections for µmA(x) are often used to describe the
modifiers not, very, and fairly:

not, µnotA(x) = 1 − µA(x), (2.5)

very, µveryA(x) = [µA(x)]2, (2.6)

fairly, µfairlyA(x) = [µA(x)]
1

2 . (2.7)

Example 2.5

Consider the fuzzy set A describing the linguistic value high score
(high) related to a loan scoring model defined as
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x 0 20 40 60 80 100

µhigh(x) 0 0.2 0.5 0.8 0.9 1

where x is a base variable over U1 = {0, 20, 40, 60, 80, 100}, the universal
set; it is numerical in nature and represents a discrete scale of the scores
used in the model.

The graph of µhigh(x) is shown in Fig. 2.3. by dots.
The linguistic value high score can be modified to become not high

score, very high score, and fairly high score by using (2.5)–(2.7). First
let us find not high score:

µnot high(x) = 1 − µhigh(x).

0

1

µ

x

20 40 60 80 100 

not high
x

x

x

high

x

x
x

Fig. 2.3. Fuzzy sets high score (dots) and not high score (crosses).

Using the table for µhigh(x) we calculate

µnot high(0) = 1 − µhigh(0) = 1 − 0 = 1,

µnot high(20) = 1 − µhigh(20) = 1 − 0.2 = 0.8,

µnot high(40) = 1 − µhigh(40) = 1 − 0.5 = 0.5,

µnot high(60) = 1 − µhigh(60) = 1 − 0.8 = 0.2,

µnot high(80) = 1 − µhigh(80) = 1 − 0.9 = 0.1,

µnot high(100) = 1 − µhigh(100) = 1 − 1 = 0.

Hence for the fuzzy set not high score we obtain the table (see Fig. 2.3)
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x 0 20 40 60 80 100

µnot high(x) 1 0.8 0.5 0.2 0.1 0

Similarly we construct the tables for the fuzzy sets very high score
and fairly high score. The results are presented in Fig. 2.4.

0

1

µ

fairly high

x20 40 60 80 100

very high

Fig. 2.4. Fuzzy sets very high score (dots) and fairly high score (squares).

µvery high(x) = [µhigh(x)]2.

x 0 20 40 60 80 100

µvery high(x) 0 0.04 0.25 0.64 0.81 1

µfairly high(x) = [µfast(x)]
1

2 .

x 0 20 40 60 80 100

µfairly high(x) 0 0.447 0.707 0.894 0.949 1

2

Example 2.6

The fuzzy set B describes the linguistic value good credit (good). The
membership function of B is (see Fig. 2.5)



2.5. Linguistic Modifiers 49

y 0 20 40 60 80 100

µgood(y) 0 0.2 0.4 0.7 1 1

where y is a base variable over U2 = {0, 20, 40, 60, 80, 100}, the universal
set; it is a discrete scale for credit rating similar to that in Example 2.5
concerning high score.

0

1

µ

20  40 60 80 100 y

Fig. 2.5. Fuzzy set good credit.

Following Example 2.5 we modify good credit using (2.5)–(2.7). The
results are given below.

y 0 20 40 60 80 100

µnot good(y) 1 0.8 0.6 0.3 0 0
µvery good(y) 0 0.04 0.16 0.49 1 1
µfairly good(y) 0 0.45 0.63 0.84 1 1

2

The representation of mA should express the meaning of the linguis-
tic modifier adequately. However there is no unique way to do this.

For instance the modifier very described by (2.6) can be expressed
differently by a shift of the membership function µA(x) to the right,

µveryA(x) = µA(x − c), a + c ≤ x ≤ b + c,

where c > 0 is a suitable constant (Fig. 2.6). Similarly fairly can be
described by a shift of µA(x) to the left.
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1

µ

µ
A
(x)

µ
very A

(x)

xca cbb

Fig. 2.6. Modifier very expressed by a shift.

Also µA(x) and µvery A(x) can be defined as terms of a linguistic
variable; this was already demonstrated in Example 2.1, Fig. 2.2 (old
and very old, young and very young).

2.6 Composition Rules for Fuzzy Propositions

In two-valued logic a proposition p is true or false (Section 2.1). In many-
valued logic and fuzzy logic the concept of proposition is considered in
a broader context, i.e. a proposition is true to a degree in the interval
[0, 1]. The truth of a proposition p in fuzzy logic is expressed by a fuzzy
set, hence by its membership function.

Below are listed some important propositions involving the fuzzy
sets A = {(x, µA(x))} and B = {(y, µB(y))}.

(i) x is A, proposition in canonical form;

(ii) x is mA, modified proposition;

(iii) If x is A then y is B, conditional proposition.

The propositions (i)–(iii) are illustrated in the following example.

Example 2.7

Let high score and good credit be described by the fuzzy sets defined
in Examples 2.5 and 2.6.

(i) Client loan score is high score (canonical form).
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(ii) Client loan score is a very high score (modified proposition).

(iii) If client loan score is high score then client loan credit is good
credit (conditional proposition).

2

Operation composition consists of two propositions p and q joined
by logical connectives.

The propositions are defined by

p
4
= x is A, q

4
= y is B, (2.8)

where A and B are the fuzzy sets (see Fig. 2.7)

A = {(x, µA(x))|x ∈ A ⊂ U1}, B = {(y, µB(y))|y ∈ B ⊂ U2}. (2.9)

µ µA
B

x                                                                   y

(x  )                                                                   (y  ) 0 0

µ µ

0

1   1

  0   0 x A y B

Fig. 2.7. Truth values µA(x0), µB(y0).

We can give here the following interpretation. The membership
grades µA(x) and µB(y) represent the truth values of the propositions
(2.8), correspondingly. Conversely, the truth values of (2.8) are ex-
pressed by the membership functions µA(x) and µB(y). If x0 and y0

are specified values on the universes U1 and U2, respectively, then the
truth values µA(x0), µB(y0) of propositions x0 is A, y0 is B are shown
in Fig. 2.7 where the membership functions are assumed continuous.

Composition conjunction p ∧ q

The truth value (tr) of p ∧ q (p and q) is defined by
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tr(p ∧ q) = µ
A×. B

(x, y) = min(µA(x), µB(y)), (x, y) ∈ A × B, (2.10)

where µ
A×. B

(x, y) is the membership function of the direct min product
(Section 1.8 (1.21)).

Composition disjunction p ∨ q

The truth value of p ∨ q (p or q) is defined by

tr(p ∨ q) = µA×̇B(x, y) = max(µA(x), µB(y)), (x, y) ∈ A × B, (2.11)

where µA×̇B(x, y) is the membership function of the direct max product
(Section 1.8 (1.22)).

Composition implication p → q

The truth value of p → q (if p . . . then q) is defined by

tr(p → q) = min(1, 1 − µA(x) + µB(y)), (x, y) ∈ A × B, (2.12)

meaning that to each pair (x, y) in the Cartesian product A×B we have
to attach as a membership value the smaller between 1 and 1−µA(x) +
µB(y).

There are also several other definitions for composition implication
(see for instance Mizumoto (1985)).

The rules (2.10)–(2.12) originate from the classical logic and many-
valued logics of  Lukasiewicz (see (2.2)–(2.4)).

The right hand sides of (2.10)–(2.12) are membership functions of
fuzzy relations since (x, y) belongs to the Cartesian product A × B ⊂
U1 × U2. Hence the truth values of composition rules are presented by
fuzzy relations.

In formulas (2.10)–(2.12) the notation tr which stands for truth could
be omitted similarly to Chapter 1, Section 2.1.

It should be stressed that the membership functions of A and B
(see 2.9) have different arguments, x and y, correspondingly. From this
point of view the operations min (2.10) and max (2.11) expressing the
logical connectives and and or differ from the operations min (1.9) and
max (1.10) in Section 1.3.
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Example 2.8

Consider two propositions p and q of the type (2.8) in canonical form
defined by

p
4
= x is high score, q

4
= y is good credit,

related to a loan scoring model where high score is the fuzzy set A in
Example 2.5 defined on the universe U1 (operating domain of x repre-
senting client loan score) and good credit is the fuzzy set B in Exam-
ple 2.6, defined on the universe U2 (operating domain of y representing
client credit rating).

(i) The truth value of composition conjunction (2.10) is the mem-
bership function µ

A×. B
(x, y) of the relation R presented on Table 2.6.

Table 2.6. Truth value of x is high score and y is good credit.
B

A

y 0 20 40 60 80 100
x

0 0 0 0 0 0 0
20 0 0.2 0.2 0.2 0.2 0.2
40 0 0.2 0.4 0.5 0.5 0.5
60 0 0.2 0.4 0.7 0.8 0.8
80 0 0.2 0.4 0.7 0.9 0.9
100 0 0.2 0.4 0.7 1 1

To construct the table we use the direct min product (2.10), i.e.
consider all ordered pairs (xi, yj), xi ∈ A, yj ∈ B in the Cartesian prod-
uct A × B and in the cell (xi, yj), located at the intersection of row
xi and column yj, write the smaller value of µA(xi) and µB(yj). For
instance let us calculate the truth values in the third row in Table 2.6
when x = 40 and y takes the values in B:

µhigh(40) = 0.5 > µgood(0) = 0, µ
A×. B

(40, 0) = 0

µhigh(40) = 0.5 > µgood(20) = 0.2, µ
A×. B

(40, 40) = 0.2

µhigh(40) = 0.5 > µgood(40) = 0.4, µ
A×. B

(40, 40) = 0.4

µhigh(40) = 0.5 < µgood(60) = 0.7, µ
A×. B

(40, 60) = 0.5
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µhigh(40) = 0.5 < µgood(80) = 1, µ
A×.B

(40, 80) = 0.5

µhigh(40) = 0.5 < µgood(100) = 1, µ
A×. B

(40, 100) = 0.5 .

(ii) To find the truth value of composition disjunction (2.11) we
use the direct max product and proceed like in case (i) with the only
difference that in the cell (xi, yi) we write the larger value of µA(xi) and
µB(yi).

(iii) To find the truth value of composition implication (2.12) for
each pair (xi, yj) ∈ A × B we calculate 1 − µA(xi) + µB(yj) and then
take this value if it is smaller than 1; otherwise we take 1.

2

2.7 Semantic Entailment

Semantic entailment concerns inclusion of fuzzy sets taking part in
propositions. Consider the propositions

p
4
= x is A, q

4
= x is B,

both defined on the same universe U . We say that proposition p seman-
tically entails proposition q (or q is semantically entailed by p), denoted
by

p → q (2.13)

if and only if
µA(x) ≤ µB(x), x ∈ U. (2.14)

The meaning of (2.13), based upon the concept of subset (2.14) intro-
duced in Section 1.3, is that p brings as an inevitable consequence q in
the sense that q is less specific than p.

Example 2.9

The proposition

p
4
= Client loan score is a very high score

semantically entails the proposition

q
4
= Client loan score is a high score
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no matter how the linguistic variable high score is defined. Hence from
the proposition Client loan score is a very high score we may infer that
Client loan score is a high score. We say that the semantic entailment
is strong.

To be more specific assume that high and very high are defined as
they appear in Examples 2.5 (see Figs. 2.3 and 2.4). Clearly (2.14) is
satisfied since

µvery high(x) ≤ µhigh(x).

2

Example 2.10

The proposition

p
4
= Client loan score is not a high score

may or may not semantically entail the proposition

q
4
= Client loan score is a low score

depending on how the fuzzy sets high and low are defined. In this case
we say the semantic entailment is not strong.

Let us assume that not high is defined as in Example 2.5 (Fig. 2.3)
and low is defined below (the universe U is the same) in two slightly
different ways

x 0 20 40 60 80 100

µ
(1)
low(x) 1 0.85 0.6 0.3 0.2 0.1

µ
(2)
low(x) 1 0.7 0.4 0.2 0.15 0.1

Clearly (see Fig. 2.8)

µnot high(x) ≤ µ
(1)
low(x), µnot high(x) ≈ µ

(2)
low(x),

hence the semantic entailment is not strong; if low is defined by µ
(1)
low(x),

(2.14) is satisfied; if low is defined by µ
(2)
low(x), (2.14) is not satisfied.

From the proposition Client loan score is not a high score we may
or may not infer that Client loan score is a low score.
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0

1

µ

x

20  40 60 80 100
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Fig. 2.8. Fuzzy sets not high (crosses), low (1) (circles), low (2) (squares).

2

Semantic entailment plays an important role in fuzzy logic as a main
rule of inference known as entailment principle in the sense that the
validity of proposition q is inferred from the validity of proposition p
(see (2.13)) if and only if (2.14) holds.

The entailment principle can be generalized for more that two

proposition. For instance, if p
4
= x is A, q

4
= x is B, r

4
=

x is C, and µA(x), µB(x), µC(x) are the corresponding membership
functions, we have

p → q → r

if and only if

µA(x) ≤ µB(x) ≤ µC(x).

2.8 Notes

1. Classical (two-valued) logic has its roots in the work of George
Boole (1815–1864) after whom Boolean algebra, a branch of clas-
sical logic, is named.

The modern two-valued logic started with the book Begriffsschrift
(1879) by Gottlob Frege (1848–1925), for whom the meaning of
logic is based on the rules for manipulating symbols and the propo-
sitional connectives not, or, and, if . . . then.
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Charles Peirce (1839–1914) who made important contributions to
the two-valued logic in his study On the Algebra of Logic (1880)
may be considered as one of the pioneers of many-valued logic. He
wrote: “Vagueness is no more to be done away with in the world
of logic than friction in mechanics.”

Further advancement in two-valued logic and its use to formalize
mathematics was made by Bertrand Russell (logician and philoso-
pher) and Alfread Whitehead (mathematician and philosopher) in
their fundamental work Principia Mathematica which appeared in
three volumes between 1910–1913.

2. In order to be more precise while denoting propositions and their
truth values in this Chapter we may use tr p to express the truth
value of p. Then for instance formula (2.2) will take the form

tr(p ∧ q) = min(tr p, tr q),

where tr p and tr q belong to the set {0, 1}.

3. The truth tables were introduced by the philosopher Lud-
wig Wittgenstein (1889–1951) in Tractatus Logico-Philosophicus
(1922). He made significant contributions to the philosophy of
mathematics.

4. The origins of many-valued logics can be traced back to ancient
Greek philosophy. Aristotle (384–322 B.C.) himself, the father of
logic, made remarks about the problematic truth values of propo-
sitions expressing future events. In Metaphysics he wrote “The
more and less are still present in the nature of things.”

5. The three-valued logic was established independently by J.
 Lukasiewicz (1920) and E. Post (1921). They also introduced
many-valued logics.

6. The many-valued logic is a generalization, not a rejection, of the
classical two-valued logic. The many-valued logic only disman-
tles the philosophical illusions about the absoluteness of classical
logic and proposes a more general approach towards solving logical
problems.
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7. A part of fuzzy logic is possibility theory introduced by Zadeh
(1978). The basic concept of possibility theory is that of possi-
bility distribution. The membership function µA(x) of a fuzzy set
A can be considered as a constraint or restriction on the values
(grades, degrees of membership) that can be assigned to x ∈ U .
In other words, the degree of membership µ ∈ [0, 1] is interpreted
as a possibility level π ∈ [0, 1]. The fuzzy set A is interpreted as
a possibility distribution Π(x); to the membership function µA(x)
corresponds the function π(x) describing the possibility distribu-
tion Π(x); π(x) ∈ [0, 1]; actually π(x) = µA(x).

8. Perhaps the most important linguistic variable is truth. It is de-
scribed by a fuzzy set with membership function µtrue(x), µ ∈ [0, 1]
(we are using true instead of truth). False is interpreted as not
true.

Truth and its terms have been defined differently in fuzzy logic.
We consider first the simplest definition introduced by Baldwin
(1979)

true
4
= {(x, µtrue(x)) | x ∈ [0, 1], µtrue(x) = x, µ ∈ [0, 1]}.

The modifiers (2.5)–(2.7) applied to µtrue(x) = x give that

µnot true(x) = µfalse(x) = 1 − x,

µvery true(x) = [µtrue(x)]2 = x2,

µfairly true(x) = [µtrue(x)]
1

2 = x
1

2 .

Similarly one can define

µvery false(x) = (1 − x)2, µfairly false(x) = (1 − x)
1

2 .

The extreme case x = 1 in µtrue(x) = x gives the singleton
µabsolute true(1) = 1; then it follows that µabsolute false(0) = 1.

The linguistic variables truth and false are shown in Fig. 2.9. On
the same figure are shown also their modifications and the modi-
fied modifications:

µvery very true(x) = [µvery true(x)]2 = x4,

µvery very false(x) = [µvery false(x)]2 = (1 − x)4.
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Fig. 2.9. Linguistic variable truth and various modifications.

Zadeh (1975) defined truth by the membership function (Fig. 2.10)

µtrue(x) =











0 for 0 ≤ x ≤ a,
2(x−a

1−a
)2 for a ≤ x ≤ a+1

2 ,

1 − (x−1
1−a

)2 for a+1
2 ≤ x ≤ 1.

µ

1__

1

0    a    

false           true

x

2

1
1− 1−   a    a1   a 1+
 2  2  2

Fig. 2.10. Linguistic variable truth (Zadeh).

Here 1 +a
2 is the crossover point. The parameter a ∈ [0, 1] in-

dicates the subjective selection of the minimum value of a in
such a way that for x > a the degree of truth is positive, i.e.
µtrue(a) > 0. The membership function of false is defined by
µfalse(x) = µtrue(1−x). The terms µvery true(x) and µfairly true(x)
can be calculated from (2.6) and (2.7).


